This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Carbohydrate Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713617200

Dde as a Protecting Group for Carbohydrate Synthesis

Laurent Bornaghia; Guyla Dekany ${ }^{\text {á }}$; Nicholas B. Drinnan ${ }^{\text {á; Stephen Taylor }}$; Istvan Toth ${ }^{\text {ab }}$; Michael L. West ${ }^{\text {a }}$
${ }^{\text {a }}$ Alchemia Pty Ltd, Upper Mt Gravatt, Queensland, Australia ${ }^{\text {b }}$ The Department of Pharmacy, University of Queensland, St Lucia, Queensland, Australia

To cite this Article Bornaghi, Laurent , Dekany, Guyla, Drinnan, Nicholas B. , Taylor, Stephen, Toth, Istvan and West, Michael L.(2006) 'Dde as a Protecting Group for Carbohydrate Synthesis', Journal of Carbohydrate Chemistry, 25: 1, 118
To link to this Article: DOI: 10.1080/07328300500388685
URL: http://dx.doi.org/10.1080/07328300500388685

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


Dde as a Protecting Group for Carbohydrate Synthesis

Laurent Bornaghi, Guyla Dekany, Nicholas B. Drinnan, and Stephen Taylor

Alchemia Pty Ltd, Upper Mt Gravatt, Queensland, Australia
Istvan Toth

Alchemia Pty Ltd, Upper Mt Gravatt, Queensland, Australia and The Department of Pharmacy, University of Queensland, St Lucia, Queensland, Australia

Michael L. West
Alchemia Pty Ltd, Upper Mt Gravatt, Queensland, Australia
Oligosaccharide synthesis using aminosugars requires the presence of a suitable amino protecting group. A number of protecting groups are currently used, and while many display favorable properties, most agents available still suffer from certain disadvantages. This report details the use of a hydrazine labile aminosugar protecting group, N-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl] (Dde), which can be introduced and removed in a facile and cost-effective manner.

Keywords Carbohydrates, Vinylogous amides, Protecting group

INTRODUCTION

Aminosugars are important constituents of various glycoconjugates and biologically relevant oligosaccharides. ${ }^{[1]}$ Examples include peptidoglycans, mucopolysaccharides, glycopeptides and proteins, oligosaccharides of human milk, and blood group determinants. Aminosugars are also often encountered in bacterial and tumor-associated carbohydrate antigens. ${ }^{[2]}$

There have been various methods reported for the formation of 2-deoxy $2-N$-protected carbohydrate donors for the synthesis of 1,2-trans-glycosides.

[^0]2-Deoxyphthalimido donors were the most commonly used in 1980s. ${ }^{[3]}$ More recently, tetrachlorophthaloyl (TCP), ${ }^{[4]}$ pentenoyl, ${ }^{[5]}$ dithiasuccinoyl (Dts), ${ }^{[6]}$ allyloxycarbonyl (Alloc), ${ }^{[7,8]}$ 2,2,2-trichloroethyloxycarbonyl (Troc), ${ }^{[9]} \mathrm{N}, \mathrm{N}$ diacetyl, ${ }^{[10]}$ 2,5-dimethylpyrrole, ${ }^{[11]}$ and dimethylmaleoyl (DMM) ${ }^{[12]}$ protection has been used for 1,2-trans-glycosylation of aminosugars.

There has been to date an absence of suitable N-protecting groups for 1,2-cis-glycosylation of aminosugars. The azide group has proven effective as a masked nonparticipating amino functionality, thereby allowing the synthesis of 1,2 -cis-linked 2 -amino-2-deoxy glycosides. ${ }^{[13]}$ However, there are various problems associated with the preparation of 2 -azido-2-deoxy sugars. ${ }^{[14-19]}$ Other nonparticipating groups that have been reported include 2,4-dinitrophenyl and p-methoxybenzylimino, both of which result in loss of the desired product. ${ }^{[20]}$

In solid-phase peptide synthesis (SPPS), N-[1-(4,4-dimethyl-2,6-dioxocyclo-hex-1-ylidene)ethyl] (Dde) has been used effectively as a lysine side chain amino protecting group. ${ }^{[21]}$ Further, a derivatized Dde group has demonstrated efficacy as a linker for both solid-phase carbohydrate and peptide synthesis. ${ }^{[22]}$ With similar structural characteristics to Dde, the recently reported ($1,3-$ dimethyl-2,4,6(1H,3H,5H)-trioxopyrimidine-5-ylidene)methyl (DTPM) protecting group has displayed some nonparticipating characteristics. ${ }^{[23]}$

Herein, we report the investigations in our laboratory directed toward determining the efficacy of the Dde group as an amino sugar protecting group. Furthermore, a short study on the potential nonparticipating effect of the Dde group for the synthesis of amino-sugar containing glycoconjugates has been carried out. ${ }^{[24]}$

RESULTS AND DISCUSSION

Dde Protection of Aminosugars

Generally, Dde-type vinylogous amide protection of aminosugars can be achieved in good yield by refluxing an unprotected aminosugar with the commercially available 2 -acetyldimedone in alcohol. If required, secondary and tertiary bases can catalyse the reaction. Typically, glucosamine hydrochloride was Dde protected by refluxing with 2 -acetyldimedone in methanol to give compound 1 (Sch. 1).

As mentioned, it was of interest to examine the stability of the Dde protecting group to common carbohydrate chemistries, as well as the protecting group's influence on the outcome of various glycosylation reactions. To this end several suitably protected Dde-containing donor sugars were synthesized. Compound $\mathbf{1}$ was acetylated with acetic anhydride in pyridine to give glucopyranose 2 as a crystalline solid in 86% yield. Peracetate 2 was

Scheme 1: Conditions: i. 2-Acetyldimedone/MeOH (78\%).
treated with $45 \% \mathrm{HBr} / \mathrm{AcOH}$ at rt to give the solid glycosyl bromide $\mathbf{3}$ in good yield. Bromosugar 3 was also found to be a stable crystalline solid at rt. Bromosugar 3 was refluxed in acetone with thiourea to give the isothiouronium salt 4. Under phase-transfer conditions uronium salt 4 was treated with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ followed by reaction with methyl iodide (MeI) in methanol to give thiomethyl glycoside 5 . In an alternative sequence, peracetate 2 was converted with piperidine to hemiacetal 6. Subsequent treatment of hemiacetal 6 with trichloroacetonitrile in the presence of 1,8-diazabicyclo(5.4.0)-undec-7-ene (DBU) gave the trichloroacetimidate 7 in an α / β ratio of $12 / 1$ (Sch. 2).

The stability of the Dde group to other common protecting group manipulations was also examined (Sch. 3). Under Zemplen conditions, thioglycoside 5 was converted to triol 8 in good yield. Experience in our laboratories has shown that the Dde group shows far greater stability to Zemplen conditions than, for example, the phthalimido group. Treatment of $\mathbf{8}$ with α, α-dimethoxytoluene (α, α-DMT) and catalytic p-toluenesulphonic acid ($p-\mathrm{TsOH}$) in acetonitrile provided benzylidene protected $\mathbf{9}$, which was further derivatized by reaction with biphenylcarbonylchloride to give the fully protected derivative 10. The benzylidene ring of derivative 10 was then cleaved with $p-\mathrm{TsOH}$ in $\mathrm{MeCN} / \mathrm{MeOH}$ to give diol 11. Triol 8 was also treated with t-butyldiphenylsilylchloride in the presence of imidazole to give diol 12. Similarly, triol 8 was treated with trityl chloride in pyridine to give compound 13. Triol 8 was then regenerated from compounds 12 and 13 by treatment with tetrabutylammoniumfluoride and $p-\mathrm{TsOH}$, respectively.

Glycosylation Studies with Dde Protected Aminosugars

Introductory glycosylation studies were carried out with the previously formed Dde-protected donor sugars: peracetate 2, bromosugar 3, thioglycoside 5,

Scheme 2: Conditions: i. $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Py}$; ii. $\mathrm{HBr} / \mathrm{AcOH}, \mathrm{DCM}$; iii. Thiourea, Acetone; iv. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}, 1,2-$ DCE; v. $\mathrm{K}_{2} \mathrm{CO}_{3}$, Acetone/Water, Mel; vi. Piperidine, DMF; vii. Trichloroacetonitrile, DBU.
and trichloroacetimidate $\mathbf{7}$ and 3 acceptors (methanol, 4-phenylbenzylalcohol, and 1,2-3,4-di- O-isopropylidene- α-d-galactopyranose). Surprisingly, sugars 2 and 5 were unable to be activated using standard conditions and were recovered after the coupling reaction (Sch. 4). Although a disappointing result, this failure to activate thiomethyl glycosides does open up interesting opportunities in armed/disarmed-type glycosylations, whereby the Dde group is employed to effectively mask a thiomethylglycoside leaving group.

More successful glycosylations were carried out with the Dde-protected bromosugar and trichloroacetimidate. Bromosugar 3 was reacted with 4-phenylbenzylalcohol, methanol, and 1,2-3,4-di- O-isopropylidene- α-D-galactopyranose employing silver triflate as a promoter. Similarly, trichloroacetimidate $\mathbf{7}$ was reacted with 4 -phenylbenzylalcohol and 1,2-3,4-di- O-isopropylidene- α-Dgalactopyranose under borontrifluorideetherate activation (Sch. 5, results provided in Table 1).

Results in Table 1 indicate that there is considerable nonparticipating characteristics to both Dde donor sugars 3 and 7 .

Scheme 3: Conditions: i. NaOMe/MeOH; ii. α, α-DMT, MeCN, p-TsOH; iii. Biphenylcarbonylchloride, DMAP, 1,2-DCE; iv. MeCN/MeOH, p-TsOH; v. TBDPS-Cl, Imidazole, 1,2-DCE; vi. TBAF, THF; vii. Trityl chloride, Pyridine; viii. p-TsOH, MeCN, MeOH.

So far only methanol, di-O-isopropylidene-d-galactose, and a benzylic alcohol have been successfully employed as glycosylation acceptors. Some less reactive acceptors such as compound 9 were trialed without success. Experiments with less reactive acceptors were typically low yielding ($\sim 15 \%$) with an α / β ratio favoring 1,2-trans-glycoside formation.

Deprotection of Dde-Protected Aminosugars

The Dde group is labile to ammonia, hydrazine, and primary amines (ethanolamine, ethylenediamine, n-butylamine, hydroxylamine, etc.) at rt. The Dde group also exhibits some lability toward aqueous hydroxides and under some conditions is susceptible to alkylation. Unwanted alkylation of the Dde group was shown to deactivate it to the conditions required for cleavage. The
L. Bornaghi et al.

Scheme 4: Conditions: (a) (i) SnCl_{4} or (ii) TMSOTf and primary or secondary alcohol acceptor, (b) (i) DMTST or (ii) DMTSB or (iii) MeOTf and primary or secondary alcohol acceptor.

Scheme 5: Glycosylation reactions.

Table 1: Results of glycosylations with Dde protected aminosugar donors.

Entry	Donors	Acceptors	Products	Yields	α / β Ratio
1	3	Methanol	14 α / β	81	13:1
2	3	4-Phenylbenzylalcohol	15 α / β	72	7:10
3	3	1,2-3,4-di-O-Isopropylidene- α-Dgalactopyranose	16 α / β	86	1:1.75
4	7	4-Phenylbenzylalcohol	15 α / β	74	2:3
5	7	1,2-3,4-Di-O- isopropylidene- α-Dgalactopyranose	16 α / β	48	1:2

following scheme (Sch. 6) provides an example of Dde cleavage by treatment with ammonia/methanol solution, resulting in amines 17 and 18 in high yield.

CONCLUSION

The results of our investigations have shown that the Dde-protecting group is stable to a wide range of carbohydrate chemistries. The excellent crystalline characteristics that the Dde group imparts to carbohydrate building blocks and the ease of its introduction and cleavage make it an ideal protecting group for the facile synthesis of monosaccharide donor sugars and derivatives. At this stage the capabilities of Dde as a nonparticipating group for the synthesis of 1,2-cis-glycosidic linkages have not been comprehensively explored; however, initial results indicate that in most cases the 1,2-trans-glycoside i.e.

Scheme 6: Conditions: i. $\mathrm{MeOH} / \mathrm{NaOMe}$; ii. $\mathrm{NH}_{3} / \mathrm{MeOH}$.
the beta anomer formed preferentially. The complete deactivation of thioglycoside donor sugars by Dde was unexpected but may prove to be useful in the coupling of complex oligosaccharides to aglycons and supports. Similarly, such deactivation may prove useful in the synthesis of repeating oligosaccharide motifs. So far the Dde group has proven to be a valuable tool in carbohydrate synthesis.

EXPERIMENTAL

General Methods

Purification was achieved by flash chromatography on silica gel (0.04040.063 mm , Amicon), using mobile phases as stated. Reaction progress was monitored by thin layer chromatography (TLC) on Kiesegel $60 \mathrm{~F}_{254}$ (Merck) using mobile phases as stated with detection by UV light and/or charring with 5% sulfuric acid. Solvents were evaporated under reduced pressure with a rotary evaporator. ${ }^{1} \mathrm{H}$ NMR and COSY spectra were obtained with a Bruker AM 500 instrument operating at a field of 500 MHz , a Brucker ARX 500 MHz , or a Varian Mercury 400 broadband spectrometer (internal standard $\mathrm{Me}_{4} \mathrm{Si}$, $\delta=0.00$). Chemical shifts are reported in $\mathrm{ppm}(\delta)$ referenced from solvent. Mass spectra were run with a VG analytical ZAB-SE instrument using fast atom bombardment (FAB) techniques $-20 \mathrm{kV} \mathrm{Cs}{ }^{+}$ion bombardment, with $2 \mu \mathrm{~L}$ of appropriate matrix, either 3-nitrobenzyl alcohol or thioglycerol with $\mathrm{NaI}(\mathrm{MeOH})$ solution, added when necessary to produce natriated species when no protonated molecular ions were observed, or on a PE SCIEX API 3000 MS SHIMADZU SLC/LC-10A HPLC gradient system.

2-Deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-D-glucopyranose (1)

To a mixture of sodium ($143 \mathrm{mg}, 6.21 \mathrm{mmol}$) completely dissolved in anhydrous methanol $(30 \mathrm{~mL})$, was added D-glucosamine hydrochloride (1.34 g , 6.21 mmol). The reaction mixture was stirred at rt for 5 min .2 -Acetyldimedone $(1.69 \mathrm{~g}, 9.32 \mathrm{mmol})$ was added, and the reaction mixture was refluxed for 5 h . The reaction mixture was cooled and the product was precipitated by the addition of ether $(200 \mathrm{~mL})$ and collected by filtration to yield 1 as single anomer ($1.66 \mathrm{~g}, 78 \%$). $\mathrm{R}_{\mathrm{f}} 0.37\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 10: 0.5\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 5.12$ (d, $1 \mathrm{H}, \mathrm{J}_{1,2} 3.6 \mathrm{~Hz}, \mathrm{H}-1$), $3.60(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 2.38$, $2.36\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28,2.27\left(2 \mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 0.85\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) . \mathrm{HRMS}$ (TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{17}$: 343.1631. Found: $344.1676[\mathrm{M}+\mathrm{H}]^{+}$.

1,3,4,6-Tetra-O-acetyl-2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)- α-D-glucopyranose (2)

A mixture of $\mathbf{1}(1.55 \mathrm{~g}, 4.51 \mathrm{mmol})$, pyridine (11 mL), and acetic anhydride $(20 \mathrm{~mL})$ was stirred at rt overnight. The reaction mixture was evaporated, and the product crystallized from $\mathrm{MeOH}\left(10 \mathrm{~mL},-15^{\circ} \mathrm{C}\right)$ to afford $2(1.95 \mathrm{~g}$, 86%). $\mathrm{R}_{\mathrm{f}} 0.35$ (Hexane/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.70$ (d, $1 \mathrm{H}, \mathrm{NH}$), 6.22 (d, 1H, J ${ }_{1,2} 3.8 \mathrm{~Hz}, \mathrm{H}-1$), 5.44 (t, $1 \mathrm{H}, \mathrm{J}_{3,4} 9.9 \mathrm{~Hz}, \mathrm{H}-3$), 5.19 (t, $1 \mathrm{H}, \mathrm{J}_{4,5}$ $10.0 \mathrm{~Hz}, \mathrm{H}-4), 4.39$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 4.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}} 1.2 \mathrm{~Hz}\right.$, $J_{5,6 \mathrm{~b}} 3.9 \mathrm{~Hz}, \mathrm{H}-5$), 4.13 (dd, $1 \mathrm{H}, \mathrm{J}_{2,3} 9.8 \mathrm{~Hz}, \mathrm{H}-2$), 4.06 (dd, $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2 \mathrm{~Hz}$, $\mathrm{H}-6 \mathrm{a}), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<\right), 2.35\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.09,2.03,1.97$ (3s, $9 \mathrm{H}, 3 \mathrm{CH}_{3}$ acetyl), 1.00 (s, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$); HRMS (TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{11}$: 511.2054. Found: $512.2145[\mathrm{M}+\mathrm{H}]^{+}$.

3,4,6-Tri-O-acetyl-2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)- α-D-glucopyranosyl bromide (3)

A mixture of $2(2 \mathrm{~g}, 3.9 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$ and HBr in acetic acid (45%) $(5.0 \mathrm{~mL})$ was stirred at rt for 1 h . The reaction mixture was diluted with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and washed with cold $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, cold saturated NaHCO_{3} solution (50 mL), and cold $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and evaporated to afford $\mathbf{3}\left(1.88 \mathrm{~g}, 91 \%\right.$); $\mathrm{R}_{\mathrm{f}} 0.35$ (hexane/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 6.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.7 \mathrm{~Hz}, \mathrm{H}-1\right), 5.55$ (t , 1H, J $\mathrm{J}_{3,4} 9.7 \mathrm{~Hz}, \mathrm{H}-3$), 5.23 (t, 1H, J $\mathrm{J}_{4,5} 9.9 \mathrm{~Hz}, \mathrm{H}-4$), 4.41 (m, 2H, H-6b, H-2), 4.26 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}} 1.3 \mathrm{~Hz}, \mathrm{~J}_{5,6 \mathrm{~b}} 4.0 \mathrm{~Hz}, \mathrm{H}-5$), 4.14 (dd, $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}} 11.9 \mathrm{~Hz}$, $\mathrm{H}-6 \mathrm{~b}$), 4.09 (dd, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 2.62 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<$), 2.41 ($\mathrm{s}, 4 \mathrm{H}$, $2 \times \mathrm{CH}_{2}$), 2.11, 2.04, 1.96 ($3 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}$ acetyl), 1.02 (s, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); HRMS (TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BrNO}_{9}$: 531.3767. Found: $532.1146[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-1-thio- β-dglucopyranoside (5)

Thiourea ($280 \mathrm{mg}, 3.37 \mathrm{mmol}$) was added to a solution of $\mathbf{3}(2.05 \mathrm{~g}$, 3.85 mmol) in acetone (10 mL). The mixture was refluxed for 30 min and then concentrated. The residue was purified by column chromatography (CHCl_{3}) $\mathrm{MeOH}, 5: 1)$ yielding S-[3,4,6-tri-O-acetyl-2-Deoxy-2-N-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl]- β-D-glucopyranosyl]-isothiouronium bromide 4 ($1.72 \mathrm{~g}, 85 \%$); $\mathrm{R}_{\mathrm{f}} 0.46\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 5: 1\right)$. To $4(1.7 \mathrm{~g}, 3.25 \mathrm{mmol})$ was added a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(538 \mathrm{mg}, 0.225 \mathrm{mmol})$ in water $(0.2 \mathrm{~mL})$ and 1,2 -dichloroethane $(0.24 \mathrm{~mL})$. The reaction mixture was kept under reflux at $85^{\circ} \mathrm{C}$ for 20 min . After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ the layers were separated. The
organic phase was washed with water (3 mL), dried over MgSO_{4}, concentrated under reduced pressure, and purified by column chromatography (ether/ $\mathrm{MeOH} 10: 1)$ to yield the thioglycoside precursor to $5(1.41 \mathrm{~g}, 87 \%)$. Then to a solution of the thioglycoside ($1.17 \mathrm{mg}, 2.4 \mathrm{mmol}$) in acetone (2.5 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(400 \mathrm{mg})$ in water (2.5 mL), followed by methyliodide (370 mg , 2.6 mmol). After 2 h the reaction mixture was concentrated under reduced pressure and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the layers were separated. The organic phase was washed twice with water (50 mL), dried over MgSO_{4}, and evaporated. The residue was purified by chromatography (EtOAc/petroleum ether $2: 1$) to yield $5(947 \mathrm{mg}, 58 \%)$; $\mathrm{R}_{\mathrm{f}} 0.44$ ($\mathrm{EtOAc} /$ petroleum ether $2: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 5.24\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3,4} 9.4 \mathrm{~Hz}, \mathrm{H}-3\right), 5.09$ (t, $1 \mathrm{H}, \mathrm{J}_{4,5} 9.8 \mathrm{~Hz}, \mathrm{H}-4$), 4.64 (d, $1 \mathrm{H}, \mathrm{J}_{1,2} 10.0 \mathrm{~Hz}, \mathrm{H}-1$), 4.30 (dd, $1 \mathrm{H}, \mathrm{J}_{1,2}$ $9.8 \mathrm{~Hz}, \mathrm{H}-2), 4.01$ (m, 3H, H-6a, H-6b, H-5), $2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<\right)$, $2.42\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.09,2.02,1.96(3 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{AcO}), 1.03$ (s, 6H, $2 \mathrm{CH}_{3}$). HRMS (TOF) Caled for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{9} \mathrm{~S}: 499.1876$. Found: $500.1917[\mathrm{M}+\mathrm{H}]^{+}$.

3,4,6-Tri-O-acetyl-2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)- α-D-glucopyranose (6)

To a solution of $2(0.5 \mathrm{~g} 0.98 \mathrm{mmol})$ in dry DMF (10 mL), piperidine $(0.13 \mathrm{~mL})$ was added. The reaction mixture was stirred at rt overnight, then concentrated under vacuum. The crude mixture was purified by chromatography (EtOAc/petroleum ether 2:1) to yield 6 ($340 \mathrm{mg}, 74 \%$); $\mathrm{R}_{\mathrm{f}} 0.44$ $\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}_{1: 1}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 5.49\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3,4}\right.$ $9.6 \mathrm{~Hz}, \mathrm{H}-3$), 5.28 (d, $1 \mathrm{H}, \mathrm{J}_{1,2} 3.3 \mathrm{~Hz}, \mathrm{H}-1$), 5.11 (t, $1 \mathrm{H}, \mathrm{J}_{4,5} 9.9 \mathrm{~Hz}, \mathrm{H}-4$), 4.42 (dd, 1H, J $\mathrm{J}_{2,3} 9.7 \mathrm{~Hz}, \mathrm{H}-2$), 4.39 (dd, $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 4.33 (dd, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}} 1.2 \mathrm{~Hz}, \mathrm{~J}_{5,6 \mathrm{~b}} 3.9 \mathrm{~Hz}, \mathrm{H}-5\right), 2.59$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}-$ $\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<), 2.37\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.10,2.03,1.96\left(3 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$ acetyl), 1.01 (s, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$). HRMS (TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{10}: 469.1948$. Found: $470.1984[\mathrm{M}+\mathrm{H}]^{+}$.

2-Deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-3,4,6-tri-O-acetyl- α, β-D-glucopyranosyl trichloroacetimidate (7)

A mixture of $\mathbf{6}(1.7 \mathrm{~g}, 3.62 \mathrm{mmol})$ and trichloroacetonitrile $(2.2 \mathrm{~mL}$, 21.74 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and 1,8 -diazabicyclo(5.4.0)-undec- 7 -ene ($108 \mu \mathrm{~L}, 0.72 \mathrm{mmol}$) added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h and at rt for 2 h . The solution was evaporated, and the residue purified by column chromatography yielding $7(880 \mathrm{mg}, 40 \%, \alpha: \beta, 12: 1)$; $\mathrm{R}_{\mathrm{f}} 0.61\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc} 1: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 8.85$, ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $6.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.5 \mathrm{~Hz}, \mathrm{H}-1\right), 5.55\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3,4} 10.0 \mathrm{~Hz}, \mathrm{H}-3\right), 5.24$
(t, 1H, J ${ }_{4,5} 10.0 \mathrm{~Hz}, \mathrm{H}-4$), 4.26 (m, 4H, H-2, H-6a, H-6b, H-5), 2.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-$ $\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<), 2.36\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.11,2.08,2.00\left(3 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$ acetyl), 1.02, $1.04\left(2 \times \mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) . \mathrm{HRMS}(\mathrm{TOF})$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{10}: 613.8816$. Found: $614.8947[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-1-thio- β-d-glucopyranoside (8)

Sodium ($10 \mathrm{mg}, 0.44 \mathrm{mmoL}$) was reacted with anhydrous $\mathrm{MeOH}(25 \mathrm{~mL}$), and then to the solution was added compound $5(720 \mathrm{mg}, 1.44 \mathrm{mmoL})$. The reaction mixture was stirred at rt overnight and then neutralized to pH 7 using Amberlite resin IR $120\left(\mathrm{H}^{+}\right)$. The resin was filtered out and the residue was concentrated under vacuum to yield compound 8 as a white powder ($496 \mathrm{mg}, 92 \%$). $\mathrm{R}_{\mathrm{f}} 0.1$ ($\mathrm{EtOAc} /$ petroleum ethers $4: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 13.64 (d, 1H, NH), 4.68 (d, 1H, J $\mathrm{J}_{1,2} 9.8 \mathrm{~Hz}, \mathrm{H}-1$), 3.85 (t, 1H, J $\mathrm{J}_{2,3} 8.9 \mathrm{~Hz}, \mathrm{H}-2$), 3.79 (dd, 1H, $\mathrm{J}_{5,6 \mathrm{a}} 1.3 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}} 11.4, \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 3.62 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}} 3.8 \mathrm{~Hz}$ $\mathrm{H}-6 \mathrm{~b}$), 3.59 (t, $1 \mathrm{H}, \mathrm{J}_{3,4} 9.7 \mathrm{~Hz}, \mathrm{H}-3$), 3.41 (m, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5$), 2.41 (s, 1 H , $\left.\mathrm{SCH}_{3}\right), 2.31\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<\right), 0.88(2 \times \mathrm{s}, 6 \mathrm{H}$, $2 \times \mathrm{CH}_{3}$). HRMS (TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{~S}: 373.1559$. Found: 374.1602 $[\mathrm{M}+\mathrm{H}]^{+} ;[\alpha]_{\mathrm{D}}-193.21^{\circ} \mathrm{C}(c=1.00, \mathrm{MeOH})$.

Methyl 4,6-O-benzylidene-2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-1-thio- β-Dglucopyranoside (9)

Compound $8(1 \mathrm{~g}, 2.68 \mathrm{mmol})$ and $p-\mathrm{TsOH}(10 \mathrm{mg}, 52.6 \mu \mathrm{~mol})$ were dissolved in dry acetonitrile (10 mL) and heated to $60^{\circ} \mathrm{C}$. After equilibrium was reached α, α-dimethoxytoluene ($600 \mathrm{mg}, 4.02 \mathrm{mmol}$) was added to the reaction flask. The reaction was stirred at $60^{\circ} \mathrm{C}$ for 12 h after which additional $p-\mathrm{TsOH}(10 \mathrm{mg}, 52.6 \mu \mathrm{~mol})$ and α, α-dimethoxytoluene ($200 \mathrm{mg}, 1.34 \mathrm{mmol}$) were added to the reaction mixture. After a further 6 h the reaction mixture was neutralized with triethylamine ($250 \mu \mathrm{~L}$) and the solvent removed in vacuo. The reaction mixture was taken up in EtOAc (100 mL) and washed with saturated NaHCO_{3} solution ($3 \times 100 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The residue was purified by column chromatography (EtOAc/Petroleum ether 1:1) to afford compound 9 ($900 \mathrm{mg}, 81 \%$); $\mathrm{R}_{\mathrm{f}} 0.55$ (EtOAc/Petroleum ether 2:1), ${ }^{1} \mathrm{HNMR} \delta 13.78$ (d, 1H, NH), 5.59 (s, 1-H, Ar-CH), 4.58 (d, 1H, $\mathrm{J}_{1,2} 9.6 \mathrm{~Hz}, \mathrm{H}-1$), 4.42 (dd, $1 \mathrm{H}, \mathrm{J}_{4,5}$ $10.5 \mathrm{~Hz}, \mathrm{H}-4$), 3.92 (m, 2H, H-6a, H-6b), 3.81 (t, $1 \mathrm{H}, \mathrm{J}_{3,4} 10.2 \mathrm{~Hz}, \mathrm{H}-3$), 3.64 (t, $1 \mathrm{H}, \mathrm{J}_{2,3} 9.0 \mathrm{~Hz}, \mathrm{H}-2$), $3.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}} 1.4 \mathrm{~Hz}, \mathrm{~J}_{5,6 \mathrm{~b}} 3.6 \mathrm{~Hz}, \mathrm{H}-5\right), 2.67$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<$), 2.38 (s, $3 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}\right), 1.05$ (s, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$). HRMS (TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}: 461.1872$. Found: $462.1895[\mathrm{M}+\mathrm{H}]^{+} ;[\alpha]_{\mathrm{D}}-177.95^{\circ} \mathrm{C}(c=1.00, \mathrm{MeOH})$.

Methyl 4,6-O-benzylidene-2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-3-O-(4-phenylbenzoyl)-1-thio- β-D-glucopyranoside (10)

A solution of biphenylcarbonylchloride ($667 \mathrm{mg}, 3.1 \mathrm{mmol}$) and 4 -dimethylaminopyridine ($378 \mathrm{mg}, 3.1 \mathrm{mmol}$) in dry 1,2-DCE (5 mL) was stirred at rt for 10 min . Compound $9(1.3 \mathrm{~g}, 2.8 \mathrm{mmol})$ was added portionwise. The mixture was stirred at rt for 40 min and then cooled in a water and ice bath. The resultant suspension was filtered, the filtrate and diluted with DCM (25 mL) and washed with saturated KHSO_{4} solution $(200 \mathrm{~mL})$ and water $(200 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and the solvent removed in vacuo. The residue was crystallized from dichloromethane, diethylether to give $10(1.5 \mathrm{~g}, 84 \%), \mathrm{R}_{\mathrm{f}} 0.60$ (EtOAc / petroleum ether $1: 1$), ${ }^{1} \mathrm{H}$ NMR $\delta 13.84$ (d, $1 \mathrm{H}, \mathrm{NH}$), 8.27 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{BP}$), 7.63 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{BP}$), 7.47 (m, 2H, Ar-BP), 7.41 (m, 2H, Ar), 7.33 (m, 3H, Ar), $5.66\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3,4} 9.6 \mathrm{~Hz}, \mathrm{H}-3\right)$, 5.57 (s, 1 H , benzylidene), 4.76 (d, 1 H , $\left.\mathrm{J}_{1,2} 9.9 \mathrm{~Hz}, \mathrm{H}-1\right), 4.48$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{4,5} 9.5 \mathrm{~Hz}, \mathrm{H}-4\right), 4.20\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3} 9.8 \mathrm{~Hz}\right.$, $\mathrm{H}-2), 3.91$ ($2 \times \mathrm{t}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}$), 3.76 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), 2.60 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-$ $\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}\right), 1.03,0.96$ $\left(2 \times \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$). HRMS (TOF) Calcd for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{NO}_{7} \mathrm{~S}: ~ 641.2512$. Found: $642.2525[\mathrm{M}+\mathrm{H}]^{+} ;[\alpha]_{\mathrm{D}}-139.87^{\circ} \mathrm{C}(c=1.04, \mathrm{MeOH})$.

Methyl 2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-3-O-(4-phenylbenzoyl)-1-thio- β-dglucopyranoside (11)

A mixture of $\mathbf{1 0}(1 \mathrm{~g}, 1.56 \mathrm{mmol})$ in acetonitrile/methanol ($24 \mathrm{~mL}, 1 / 1$) with a catalytic amount of p - $\mathrm{TsOH}\left(5 \mathrm{mg}\right.$) was stirred at $100^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to rt, and concentrated in vacuo and any trace solvents removed by coevaporation with toluene (25 mL). The residue was taken up with $\mathrm{DCM}(25 \mathrm{~mL})$ and washed two times with saturated NaHCO_{3} solution $(250 \mathrm{~mL})$ and saturated brine solution $(250 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and the solvent removed in vacuo to give a white solid 11, ($810 \mathrm{mg}, 94 \%$), $\mathrm{R}_{\mathrm{f}} 0.09$ (EtOAc/petroleum ether $3: 1$), ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 13.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 8.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.63$ (m, $5 \mathrm{H}, \mathrm{Ar}$), 7.49 (m, $2 \mathrm{H}, \mathrm{Ar}$), 5.38 (t, $1 \mathrm{H}, \mathrm{J}_{3,4} 9.5 \mathrm{~Hz}, \mathrm{H}-3$), 4.75 (d, $1 \mathrm{H}, \mathrm{J}_{1,2} 9.9 \mathrm{~Hz}$, $\mathrm{H}-1), 4.12$ (dd, $1 \mathrm{H}, \mathrm{J}_{4,5} 9.3 \mathrm{~Hz}, \mathrm{H}-4$), 4.05 (dd, $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}} 9.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 4.97 (m, 2H, H-2, H-6b), 3.66 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}} 1.3 \mathrm{~Hz}, \mathrm{~J}_{5,6 \mathrm{~b}} 2.9 \mathrm{~Hz} \mathrm{H}-5$), 2.64 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}\right)$, 1.01, $0.91\left(2 \times \mathrm{s}, 4 \mathrm{H}, 2 \times>\mathrm{CH}_{2}\right)$. HRMS (TOF) Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{7} \mathrm{~S}$: 553.2206. Found: $554.2182[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 6-tert-butyldiphenylsilyl-2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-1-thio- β-Dglucopyranoside (12)

To a solution of compound $\mathbf{8}(1 \mathrm{~g}, 2.7 \mathrm{mmol})$ in $1,2-\mathrm{DCE}(12 \mathrm{~mL})$ was added TBDPSCl ($411 \mathrm{mg}, 1.5 \mathrm{mmol}$) and DMAP ($183 \mathrm{mg}, 1.5 \mathrm{mmol}$). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h and then cooled in a water and ice bath. The resultant suspension was filtered and the filtrate diluted with DCM $(25 \mathrm{~mL})$ and washed twice with saturated KHSO_{4} solution $(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and the solvent removed in vacuo. The residue was purified by column chromatography (EtOAc/ petroleum ether $3: 1$) to afford compound 12 ($1.11 \mathrm{mg}, 68 \%$). $\mathrm{R}_{\mathrm{f}} 0.62$ ($\mathrm{EtOAc} /$ Toluene $3: 1$), ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 13.88$ (d, $1 \mathrm{H}, \mathrm{NH}$), $7.70(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.43$ (m, 6H, Ar), 4.45 (d, 1H, J ${ }_{1,2} 9.6 \mathrm{~Hz}, \mathrm{H}-1$), 3.95 (m, 2H, H-6b, H-6b), 3.77 (dd, 1H, J $\mathrm{J}_{2,3}$ $9.5 \mathrm{~Hz}, \mathrm{H}-2), 3.76$ (t, 1H, J $\mathrm{J}_{4,5} 9.8 \mathrm{~Hz}, \mathrm{H}-4$), $3.66\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3,4} 9.5 \mathrm{~Hz}, \mathrm{H}-3\right), 3.48$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}\right), 1.07$ (s, $\left.9 \mathrm{H}, \mathrm{C}-\left(\mathrm{CH}_{3}\right)_{3}\right), 1.03\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times>\mathrm{CH}_{2}\right), 0.03\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$. HRMS (TOF) Calcd for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{NO}_{6}$ Ssi: 611.2835. Found: $612.2815[\mathrm{M}+\mathrm{H}]^{+}$; $[\alpha]_{\mathrm{D}}{ }^{-}$ $94.23^{\circ} \mathrm{C}(c=1.00, \mathrm{MeOH})$.

Methyl 2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-6-O-trityl-1-thio- β-D-glucopyranoside (13)

Compound 8 ($250 \mathrm{mg}, 0.669 \mathrm{mmol}$) was dissolved in anhydrous pyridine $(10 \mathrm{~mL})$ and stirred with trityl chloride ($560 \mathrm{mg}, 2 \mathrm{mmol}$) at $50^{\circ} \mathrm{C}$ for 48 hours. The solvent was evaporated and trace amounts of pyridine removed by coevaporation with toluene (20 mL). The crude product was dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL}), 10 \%$ citric acid solution (50 mL), saturated NaHCO_{3} solution (50 mL) and saturated brine solution $(50 \mathrm{~mL})$. The aqueous washings were back extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ and the organic layers combined, dried over MgSO_{4}, filtered, and evaporated to dryness. The residue was chromatographed (EtOAc/toluene 3:1) to yield the desired product 13 ($270 \mathrm{mg}, 65 \%$). $\mathrm{R}_{\mathrm{f}} 0.25$ (EtOAc/toluene 3:1), ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 13.68$ (d, 1H, NH), 7.38 (m, 4H, Ar), $7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 4.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 9.6 \mathrm{~Hz}, \mathrm{H}-1\right), 3.74$ (dd, $1 \mathrm{H}, \mathrm{J}_{2,3} 9.8 \mathrm{~Hz}$, $\mathrm{H}-2$), 3.56 (m, 2H, H-3, H-4), 4.38 (m, 3H, H-5, H-6a, H-6b), 2.56 (s, 3H, $\left.\mathrm{CH}_{3}-\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}\right), 1.50$ (s, $\left.9 \mathrm{H}, \mathrm{C}-\left(\mathrm{CH}_{3}\right)_{3}\right), 0.97$ ($\mathrm{s}, 4 \mathrm{H}, 2 \times>\mathrm{CH}_{2}$). HRMS (TOF) Calcd for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{NO}_{6} \mathrm{SSi}: \quad 611.2835$. Found: $612.2815 \quad[\mathrm{M}+\mathrm{H}]^{+} ; \quad[\alpha]_{\mathrm{D}}-153,69^{\circ} \mathrm{C}$ ($c=1.01, \mathrm{MeOH}$).

Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)- α, β-D-glucopyranoside ($14 \alpha, 14 \beta$)

To a solution of $\mathbf{3}(60 \mathrm{mg}, 0.11 \mathrm{mmol})$ in dichloromethane ($5 \mathrm{~mL}-15^{\circ} \mathrm{C}$), was added silver trifluoromethanesulphonate ($43 \mathrm{mg}, 0.16 \mathrm{mmol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$. The reaction mixture was stirred overnight and filtered and the filtrate evaporated. The residue was washed with saturated NaHCO_{3} solution, dried over MgSO_{4}, and evaporated. The residue was purified by chromatography to yield methyl 3,4,6-tri-O-acetyl- 2-deoxy-2-N-[1-(4,4-dimethyl-2,6-dioxocyclo-hex-1-ylidene)ethyl]- α-D-glucopyranoside $\mathbf{1 4 \alpha}$ ($40 \mathrm{mg}, 75 \%$); $\mathrm{R}_{\mathrm{f}} 0.35$ (hexane/ EtOAc, 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 5.40\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3,4} 9.7 \mathrm{~Hz}\right.$, $\mathrm{H}-3), 5.08$ (t, 1H, J $\mathrm{J}_{4,5} 9.7 \mathrm{~Hz}, \mathrm{H}-4$), 4.82 (d, $1 \mathrm{H}, \mathrm{J}_{1,2} 3.4 \mathrm{~Hz}, \mathrm{H}-1$), 4.32 (dd, 1 H , $\left.\mathrm{J}_{2,3} 9.4 \mathrm{~Hz}, \mathrm{H}-2\right), 4.12(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.58$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<\right), 2.41\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.11,2.02,1.94(3 \mathrm{~s}, 9 \mathrm{H}$, $3 \times \mathrm{CH}_{3}$ acetyl), $1.02\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$), and methyl 3,4,6-tri-O-acetyl-2-deoxy2 - N-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl]- β-D-glucopyranoside $\mathbf{1 4 \beta}(3 \mathrm{mg}, 6 \%) ; \mathrm{R}_{\mathrm{f}} 0.33$ (Hexane/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.84(\mathrm{~d}, 1 \mathrm{H}$, NH), 5.20 (t, 1H, J $\mathrm{J}_{3,4} 9.8 \mathrm{~Hz}, \mathrm{H}-3$), 5.09 (t, 1H, $\mathrm{J}_{4,5} 9.9 \mathrm{~Hz}, \mathrm{H}-4$), 4.41 (d, 1H, $\mathrm{J}_{1,2}$ $8.2 \mathrm{~Hz}, \mathrm{H}-1), 4.32$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{2,3} 9.8 \mathrm{~Hz}, \mathrm{H}-2\right), 4.09(\mathrm{~m}, \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 3.95(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-6 \mathrm{~b}$), 3.75 (m, 1H, H-5), 3.48 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.37 ($\mathrm{s}, 4 \mathrm{H}, 2$ CH_{2}), 2.09, 2.03, 1.96 ($3 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}(\mathrm{O})-$), 1.02 ($\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$). HRMS (TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{10}$: 483.2104. Found: $484.2145[\mathrm{M}+\mathrm{H}]^{+}$.

4-Phenylbenzyl-3,4,6-tri-O-acetyl-2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)- α / β-Dglucopyranoside ($15 \alpha, 15 \beta$)

From donor 3: Under an atmosphere of nitrogen compound 3 (200 mg , $376 \mu \mathrm{mmol}$), 4-phenylbenzyl alcohol ($66 \mathrm{mg}, 358 \mu \mathrm{~mol}$) and $4 \AA$ molecular sieves $(200 \mathrm{mg})$ were combined in anhydrous DCM $(2 \mathrm{~mL})$. The reagents were stirred at rt for 4 h and cooled to $0^{\circ} \mathrm{C}$, at which time silver triflate ($138 \mathrm{mg}, 537 \mu \mathrm{~mol}$) was added. The reaction mixture was allowed to return to rt and stirred for a further 1.5 h . The reaction was neutralized by the addition of solid NaHCO_{3}, diluted with chloroform (50 mL), filtered through Celite, washed with saturated NaHCO_{3} solution ($2 \times 50 \mathrm{~mL}$) and saturated brine solution (50 mL), and dried over MgSO_{4}. The organic phase was evaporated and the resulting residue purified by column chromatography (1,2-DCE/EtOAc $6: 1$) to yield 4 -phenylbenzyl 3,4,6-tri- O -acetyl-2-deoxy-2- N -[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylide-ne)ethyl]- α / β-D-glucopyranoside ($\mathbf{1 5 \alpha}, \mathbf{1 5 \beta}$) as a white solid ($170 \mathrm{mg}, 72 \%,(\alpha: \beta$, $7: 10$), $\mathrm{R}_{\mathrm{f}} 0.35$ (DCE-EtOAc 7-3). A small amount of each anomer could be purified: ${ }^{1} \mathrm{H}$ NMR (4-phenylbenzyl 3,4,6-tri- O-acetyl-2-deoxy-2-N-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl]- α-D-glucopyranoside) $\mathbf{1 5 \alpha}$, (CDCl_{3})
$\delta 13.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 7.43(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}), 5.48\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3,4} 9.3 \mathrm{~Hz}, \mathrm{H}-3\right), 5.12\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{4,5}\right.$ $9.6 \mathrm{~Hz}, \mathrm{H}-4), 5.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 3.5 \mathrm{~Hz}, \mathrm{H}-1\right), 4.80\left(2 \times \mathrm{d}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ar}\right), 4.34$ (dd, 1H, J $6 \mathrm{a}, 6 \mathrm{~b} 9.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 4.14 (m, $3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-5, \mathrm{H}-6 \mathrm{~b}$), 2.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-$ $\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<), 2.19\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.14,2.04,1.97\left(3 \times \mathrm{s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}(\mathrm{CO})-\right)$, 1.06 (s, 6H, $2 \times \mathrm{CH}_{3}$); (4-phenylbenzyl 3,4,6-tri-O-acetyl-2-deoxy-2-N-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyll- β-D-glucopyranoside) $\mathbf{1 5} \boldsymbol{\beta},\left(\mathrm{CDCl}_{3}\right) \delta$ $13.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 7.44(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}), 5.25\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3,4} 9.4 \mathrm{~Hz}, \mathrm{H}-3\right), 5.15(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}_{4,5} 9.6 \mathrm{~Hz}, \mathrm{H}-4$), 4.8 (2d, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ar}$), 4.62 , (d, $1 \mathrm{H}, \mathrm{J}_{1,2} 8.3 \mathrm{~Hz}, \mathrm{H}-1$), 4.37, (dd, $\left.1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}} 12.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.21$ (dd, $\left.1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}_{2,3} 9.8 \mathrm{~Hz}, \mathrm{H}-2\right)$, 3.77 ($\left.\mathrm{m}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}} 2.1 \mathrm{~Hz}, \mathrm{~J}_{5,6 \mathrm{~b}} 4.5 \mathrm{~Hz}, \mathrm{H}-5\right), 2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<\right)$, $2.35\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.14,2.05,1.99,\left(3 \mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}(\mathrm{CO})\right), 1.05(\mathrm{~s}, 6 \mathrm{H}$, $2 \times \mathrm{CH}_{3}$). HRMS (TOF) Calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{NO}_{10}: 635.2730$. Found: 636.2796 $[\mathrm{M}+\mathrm{H}]^{+}$.

From donor 7: Under an atmosphere of nitrogen compound 7 (100 mg , $163 \mu \mathrm{~mol}$), 4-phenylbenzyl alcohol ($45 \mathrm{mg}, 245 \mu \mathrm{~mol}$) and $4 \AA$ molecular sieves (150 mg) were combined in anhydrous DCM $(1.5 \mathrm{~mL})$. The reaction mixture was stirred at rt for 1 h ; the reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ and TMSOTf ($10 \mu \mathrm{~L}, 543 \mu \mathrm{~mol}$) was added. The reaction mixture was allowed to return to rt and stirred for a further 2 h . The reaction was neutralized with triethylamine, diluted with chloroform (50 mL), filtered through Celite, washed with saturated NaHCO_{3} solution $(2 \times 50 \mathrm{~mL})$, and dried over MgSO_{4}. The organic phase was evaporated and the resulting residue chromatographed (DCE/EtOAc 6:1) to yield 4-phenylbenzyl 3,4,6-tri- O-acetyl-2-deoxy-2- N-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-ethyl]- α / β-D-glucopyranoside as a white solid ($76 \mathrm{mg} ; 74 \% ~\left(\alpha: \beta, 2: 3\right.$); $\mathrm{R}_{\mathrm{f}} 0.35$ (DCE-EtOAc 7:3). HRMS (TOF) and ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$, see experiment 15 above.

3,4,6-Tri-O-acetyl-2-deoxy-2-N-(1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)- α / β-D-glucopyranosyl($1 \rightarrow 6$)-1,2-3,4-di-O-isopropylidene galactopyranoside ($16 \alpha / 16 \beta$)

From donor 3: Compound 3 ($300 \mathrm{mg}, 56.4 \mathrm{mmol}$), 1,2-3,4-di- O-isopropylidene galactopyranose ($100 \mathrm{mg}, 37.6 \mathrm{mmol}$), and $4 \AA$ molecular sieves (350 mg) were combined under nitrogen in DCM (5 mL) and stirred at rt for 2 h . The reaction was cooled in a dry ice/acetone bath silver triflate (193 mg , 75.2 mmol) was added, and the resulting mixture stirred for $1.5 \mathrm{~h} . \mathrm{NaHCO}_{3}$ (s) was added and the mixture diluted with chloroform (50 mL), filtered through Celite, washed with saturated NaHCO_{3} solution $(2 \times 50 \mathrm{~mL})$ and saturated brine solution (50 mL) and dried over MgSO_{4}. The organic phase was evaporated and the resulting residue chromatographed (DCE/EtOAc 7:3) to
yield 3,4,6-tri- O-acetyl-2-deoxy-2- N-[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene) ethyl]- α / β-D-glucopyranosyl-(1 $\rightarrow 6$)-1,2-3,4-di- O-isopropylidene- α-D-galactopyranose (16世/16ß) as a white solid ($230 \mathrm{mg}, 86 \%, \alpha: \beta ; 1: 1.75$), $\mathrm{R}_{\mathrm{f}} 0.35$ (DCE/ EtOAc 7:3). Only a small amount of pure anomer β could be purified: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ for $16 \beta, \delta 13.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}) 5.38\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 5.0 \mathrm{~Hz}, \mathrm{H}-1\right) 5.26(\mathrm{t}, 1-\mathrm{H}$, $\left.\mathrm{J}_{3^{\prime}, 4^{\prime}} 9.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.11\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}} 5.0 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}} 7.6, \mathrm{H}-1^{\prime}\right)$, $4.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.36\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}} 12.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{\prime}\right), 4.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.12$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6 \mathrm{~b}^{\prime}$), 4.02 (dd, $\left.1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}} 11.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, $3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.60(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ $\mathrm{C}(\mathrm{NH}-)=\mathrm{C}<) 2.40,2.33\left(2 \times \mathrm{d}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.11,2.04,1.98(3 \times \mathrm{s}, 9 \mathrm{H}$, $\left.\mathrm{CH}_{3}(\mathrm{CO})-\right), 1.44,1.42,1.31,1.28\left(4 \times \mathrm{s}, 12 \mathrm{H}, 4 \times \mathrm{CH}_{3}\right), 1.04,1.01(2 \times \mathrm{s}, 6 \mathrm{H}$, $2 \times \mathrm{CH}_{3}$). HRMS (TOF) Calcd for $\mathrm{C}_{34} \mathrm{H}_{49} \mathrm{NO}_{15}: 711.3102$. Found: 712.3151 $[\mathrm{M}+\mathrm{H}]^{+}$. Only 16β could be purified as a pure compound.

From donor 7: Under an atmosphere of nitrogen, compound 7 (185 mg , $302 \mu \mathrm{~mol}$), 1,2-3,4-di- O-isopropylidene- α-D-galactopyranose ($118 \mathrm{mg}, 4.54 \mu \mathrm{~mol}$), and $4 \AA$ molecular sieves (400 mg) were combined in DCM (5 mL) and stirred at rt for 1 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, at which time TMSOTf $(20 \mu \mathrm{~L}, 110 \mu \mathrm{~mol})$ was added. The resulting mixture was allowed to return to ambient temperature and stirred for 2 h . Pyridine (2 mL) and acetic anhydride $(1 \mathrm{~mL})$ were added and the reaction mixture stirred for a further 30 min . The solvent was removed in vacuo and the resulting residue azeotropically dried with toluene $(2 \times 30 \mathrm{~mL})$. The residue was then taken up in chloroform $(50 \mathrm{~mL})$, filtered through Celite, washed with saturated NaHCO_{3} solution $(2 \times 50 \mathrm{~mL})$, and dried over MgSO_{4}. The organic phase was evaporated and the resulting residue was purified by column chromatography (DCE/ EtOAc 7:3) to yield 3,4,6-tri- O-acetyl-2-deoxy-2- N-[1-(4,4-dimethyl-2,6-dioxo-cyclohex-1-ylidene)ethyl]- α / β-D-glucopyranosyl- $(1 \rightarrow 6)$-1,2-3,4-di- O-isopropylidene galactopyranoside ($\mathbf{1 6 \alpha} \boldsymbol{\alpha}, \mathbf{1 6 \beta}$) as a white film ($104 \mathrm{mg}, 48 \%(\alpha / \beta ; 1: 2)$; Rf 0.35 (DCE/EtOAc 7:3). For ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and HRMS (TOF), see above.

Methyl 2-amino-2-deoxy-1-thio- β-d-glucopyranoside (17)

A mixture of compound $5(12.03 \mathrm{~g}, 24.1 \mathrm{mmol})$ and $\mathrm{NaOMe}(100 \mathrm{mg}$, $1.85 \mathrm{mmol})$ in dry methanol (100 mL) was stirred at rt overnight. The reaction mixture was neutralized with Amberlite IR $120\left(\mathrm{H}^{+}\right)$, filtered, and evaporated. The residue was dissolved in $\mathrm{NH}_{3} / \mathrm{MeOH}$ and stirred at $45^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was reduced in vacuo and the resultant oil evaporated from benzene/ethanol ($1: 1,3 \times 150 \mathrm{~mL}$). Crystallisation from ethanol/ether yielded compound 17 ($4.61 \mathrm{~g}, 92 \%$); $\mathrm{R}_{\mathrm{f}} 0.21\left(\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}, 9: 1\right),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2} 9.6 \mathrm{~Hz}, \mathrm{H}-1\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{2,3}\right.$ $8.6 \mathrm{~Hz}, \mathrm{H}-2$), 3.63 (dd, $1 \mathrm{H}, \mathrm{J}_{4,5} 9.0 \mathrm{~Hz}, \mathrm{H}-4$), 3.87 (apparent d, $1 \mathrm{H}, \mathrm{H}-3$), 3.27 (m, 3H, H-5, H-6a, H-6b). HRMS (TOF) Calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}: ~ 209.0724$. Found: $210.0712[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 2-amino-2-deoxy-4,6-O-benzylidene-1-thio- β-Dglucopyranoside (18)

To a solution of aqueous ammonia in methanol ($150 \mathrm{~mL}, 28 \%$ aqueous ammonia $/ \mathrm{MeOH}, 1: 1$) was added compound $9(5.30 \mathrm{~g}, 11.50 \mathrm{mmol})$. The suspension was stirred at rt overnight. The precipitate was collected and washed with diethylether and the washings discarded. The reaction mother liquor concentrated, azeotroped with toluene ($3 \times 100 \mathrm{~mL}$), and suspended in diethyl ether $(300 \mathrm{~mL})$ and stirred for 2 h . The solid was collected and combined with the earlier precipitate to afford compound 18 ($3.4 \mathrm{~g}, 99.5 \%$); R_{f} $0.4\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 10: 1\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.41$ (m, $5 \mathrm{H}, \mathrm{Ar}$), 5.60 (s, 1-H, Ar-CH), 4.35 (d, 1H, J $\mathrm{J}_{1,2} 9.8 \mathrm{~Hz} \mathrm{H}-1$), 4.19 (dd, $1 \mathrm{H}, \mathrm{J}_{4,5} 10.3 \mathrm{~Hz}, \mathrm{H}-4$), 3.70 (m, 1H, H-3), 3.44 (m, 2H, H-6a, H-6b), 3.31 (m, 1H, J ${ }_{5,6 \mathrm{a}} 1.8 \mathrm{~Hz}, \mathrm{~J}_{5,6 \mathrm{~b}} 4.1 \mathrm{~Hz}, \mathrm{H}-5$), 2.61 (t, $1 \mathrm{H}, \mathrm{J}_{2,3} 8.9 \mathrm{~Hz}, \mathrm{H}-2$), 2.12 ($\mathrm{s}, 3-\mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}$). HRMS (TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: 297.1035$. Found: $298.1088[\mathrm{M}+\mathrm{H}]^{+}$.

REFERENCES

[1] (a) Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993, 3, 97-130; (b) Schmidt, R.R.; Kinzy, W. Anomeric-oxygen activation for glycoside synthesis: the trichloroacetimidate method. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21-123.
[2] Toyokuni, T.; Singhal, A.K. Synthetic carbohydrate vaccines based on tumourassociated antigens. Chem. Soc. Rev. 1995, 231-242.
[3] Sasaki, T.; Minamoto, K.; Itoh, H. Convenient synthesis of some purine 8,5'-imino cyclonucleosides. J. Org. Chem. 1978, 43, 2320-2325.
[4] Castro-Palomino, J.C.; Schmidt, R.R. N-Tetrachlorophthaloyl-protected trichloroacetimidate of glucosamine as glycosyl donor in oligosaccharide synthesis. Tetrahedron Lett. 1995, 36, 5343-5347.
[5] Debeham, J.S.; Madsen, R.; Roberts, C.; Fraser-Reid, B. Two new orthogonal amine-protecting groups that can be cleaved under mild or neutral conditions. J. Am. Chem. Soc. 1995, 117, 3302-3303.
[6] Meinjohanns, E.; Meldal, M.; Paulsen, H.; Bock, K. Dithiasuccinoyl (Dts) aminoprotecting group used in syntheses of 1,2-trans-amino sugar glycosides. J. Chem. Soc. Perkin Trans I 1995, 405-415.
[7] Hayakawa, Y.; Kato, H.; Uchiyama, M.; Kajino, H.; Noyori, R. Allyloxycarbonyl group: a versatile blocking group for nucleotide synthesis. J. Org. Chem. 1986, 51, 2400-2402.
[8] Boullanger, P.; Banoub, J.; Descotes, G. N-Allyloxycarbonyl derivatives of D-glucosamine as promotors of 1,2-trans-glucosylation. Can. J. Chem. 1987, 65, 1343-1348.
[9] Imoto, M.; Yoshimura, H.; Shimamoto, T.; Sakahuchi, N.; Kusumoto, S.; Shiba, T. Total synthesis of Eschrichia coli lipid A, the endotoxically active principle of cellsurface lipopolysaccharide. Bull. Chem. Soc. Jpn. 1987, 60, 2205-2214.
[10] Castro-Palomino, J.C.; Schmidt, R.R. N,N-Diacetyl-glucosamine and -galactosamine derivatives as glycosyl donors. Tetrahedron Lett. 1995, 36, 6871-6874.
[11] Bowers, S.G.; Coe, D.M.; Boons, G-J. Application of 2,5-dimethylpyrrole group as a new and orthogonal amide-protecting group in oligosaccharide synthesis. J. Org. Chem. 1998, 63, 4570-4571.
[12] Aly, M.; Ibrahim, E.I.; El-Ashry, E.H.; Castro, J.C.; Schmidt, R.R. The dimethylmaleoyl group as amino protective group application to glucosamine containing oligasaccharides, Abstract Book 19th International Carbohydrate SymposiumSan Diego, 1998, BP045.
[13] (a) Paulsen, H. Progress in the selective chemical synthesis of complex oligosaccharides. Angew. Chem. 1982, 94, 184-201; (b) Banoud, J.; Boullanger, P.; Lafont, D. Synthesis of oligosaccharides of 2-amino-2-deoxy sugars. Chem. Rev. 1992, 92 (6), 1167-1195.
[14] Lemieux, R.V.; Ratcliffe, R.T. The azidonitration of tri- O-acetyl-d-galactal. Can. J. Chem. 1979, 57, 1244-1251.
[15] Buskas, T.; Garegg, P.J.; Konradsson, P.; Maloisel, J.L. Facile preparation of glycosyl donor for oligosaccharide synthesis: 2-azido-2-deoxyhexopyranosyl building blocks. Tetrahedron Asymmetry 1994, 5, 2187-2194.
[16] Bovin, N.V.; Zurabyan, S.E.; Khorlin, A.Y. Stereoselectivity of glycosylation with derivatives of 2-azido-2-deoxy-D-galactopyranose. The synthesis of a determinant oligosaccharide related to blood-group A (type 1). Carbohydr. Res. 1983, 112, 23-25.
[17] Dasgupta, F.; Garegg, P.J. 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy- α-D-glucopyranose from D-glucosamine. J. Chem. Soc. Chem. Commun. 1989, 1640-1643.
[18] Tailler, D.; Jacquinet, J.C.; Noirot, A.M.; Bean, J.M. An expeditious and stereocontrolled preparation of 2 -azido-2-deoxy- β-D-glucopyranose derivatives from D-glucal. J. Chem. Soc., Perkin. Trans. I 1992, 3163-3164.
[19] Paulsen, H.; Stenzel, W. Stereoselektive synthese α-glycosidisch verkupfter di- und oligosaccharide der 2-amino-2-desoxy-D-glucopyrano. Chem. Ber. 1978, 111, 2334-2347, 2348-2357.
[20] Fields, G.B.; Noble, R.L. Solid phase peptide synthesis utilkizing 9-fluorenylmethoxycarbonyl amino acid. Int. J. Peptide Protein Res. 1990, 35, 161-214.
[21] Bycroft, B.W.; Chan, W.C.; Chhabra, S.R.; Hone, N.D. A novel lysine-protecting procedure for continuous flow solid phase synthesis of branched peptides. J. Chem. Soc Chem. Commun. 1993, 778-781.
[22] a) Drinnan, N.D.; West, M.L.; Broadhurst, M.; Kellam, B.; Toth, I. A novel method for solid-phase synthesis of oligosaccharides using the N-1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde) linker. Tetrahedron Lett. 2001, 42 (6), 1159-1162; b) Chhabra, S.R.; Parekh, H.; Khan, A.N.; Bycroft, B.W.; Kellam, B. A Dde-based carboxy linker for solid-phase synthesis. Tetrahedron Lett. 2001, 42 (11), 2189-2192.
[23] a) Dekany, G.; Bornaghi, L.; Papageorgiou, J.; Taylor, S. A novel amino protecting group: DTPM. Tetrahedron Lett. 2001, 42 (17), 3129-3132; b) Singh, L.; Seifert, J. Application of novel, N-DTPM protected D-glucosamine building blocks in oligosaccharide synthesis. Tetrahedron Lett. 2001, 42 (17), 3133-3136.
[24] Toth, I.; Dekany, G.; Kellam, B. Protected aminosugars. Australian patent AU6082398, 1998.

[^0]: Received March 9, 2005; accepted October 4, 2005.
 Address correspondence to Michael L. West, Alchemia Pty Ltd, PO Box 6242, Upper Mt Gravatt, Queensland, Australia 4122. E-mail: mwest@alchemia.com.au

